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The	nuclear	fuel	cycle	involves	mining	of	uranium	minerals,	e.g.,	uraninite,	coffinite,	and	
brannerite,	 followed	 by	 ore	 processing,	 enrichment	 of	 the	 fissile	 component,	 and	
production	of	fuel	pellets	that	are	encapsulated	in	rods	and	used	in	nuclear	reactors	to	
generate	electricity.	Fuel	rods	are	used	in	either	a	once‐through	cycle	and	removed	from	
the	reactor	core	for	storage	(awaiting	ultimate	disposal)	or	they	are	reprocessed	and	used	
again	in	reactors.		
Historically,	 studies	 of	 Th‐U	minerals	 and	ore	 deposits	 have	played	 a	major	 role	 in	

providing	background	information	relevant	to	the	geological	disposal	of	nuclear	wastes	
arising	 from	 both	 domestic	 electricity	 generation	 and	 national	 defence	 programs.	 As	
shown	in	Figure	1	for	the	example	of	natural	pyrochlore	and	zirconolite,	Th‐U	minerals	
may	provide	useful	information	on	the	performance	of	nuclear	waste	forms	in	terms	of	
the	 crystal	 chemistry,	 radiation	 damage	 effects	 produced	 primarily	 by	 alpha	 decay	
processes,	 and	 their	 stability	when	exposed	 to	 a	 range	of	 natural	 aqueous	 fluids.	 This	
example	is	discussed	in	some	detail	in	the	companion	paper	for	this	conference	(Lumpkin	
et	al.	2017).	Additional	examples	are	reviewed	by	Lumpkin	and	Geisler‐Wierwille	(2012),	
including	 a	 range	 of	 oxide,	 silicate,	 and	 phosphate	minerals	 of	 interest	 to	 the	 nuclear	
waste	disposal	community.		

	

	
Fig.	1.	False	color	backscattered	SEM	image	of	zirconolite	and	oxycalciobetafite	in	Ti‐rich	

hydrothermal	veins	in	the	contact	aureole	of	the	Adamello	massif,	northern	Italy	
	
Radiation	damage	in	the	minerals	and	their	synthetic	analogues	occurs	on	time	scales	

ranging	from	picoseconds	to	millions	of	years	and	longer	in	very	old	rocks.	A	combination	
of	atomistic	modelling,	light	and	heavy	ion	irradiation,	and	doping	of	synthetic	samples	
with	short‐lived	actinides	has	been	very	effective	in	delineating	the	damage	mechanisms	
and	 recovery	 processes.	 Atomistic	 simulations	 using	molecular	 dynamics	 and	 density	
functional	 theory	 have	 been	 instrumental	 in	 understanding	 the	 damage	 and	 recovery	
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mechanisms	on	picosecond	time	scales	and	the	energetics	of	some	of	the	processes	(e.g.,	
defect	 formation	and	migration).	These	studies	range	 from	model	 systems	such	as	 the	
TiO2	 polymorphs	 to	 detailed	 studies	 of	 minerals	 such	 as	 perovskite,	 pyrochlore,	 and	
zircon,	among	others.		
In	particular,	experimental	and	geological	studies	of	Th‐U	minerals	have	revealed	long‐

term	recovery	processes	occurring	at	elevated	 temperature	and	pressure	 for	minerals	
including	pyrochlore,	zirconolite,	zircon,	perovskite,	brannerite,	and	crichtonite,	among	
others.	 Studies	 of	 natural	 zircon	 have	 been	 particularly	 important	 beginning	with	 the	
ground‐breaking	work	of	Holland	and	Gottfried	(1955)	and	the	work	of	others	in	the	early	
1950s.	 	 These	 studies	 set	 the	 stage	 for	 understanding	 the	 crystalline	 to	 amorphous	
transformation	 in	 zircon	 and	 other	 minerals	 and	 had	 a	 profound	 impact	 on	 future	
laboratory	studies	using	samples	doped	with	238Pu	or	244Cm	with	alpha‐decay	half‐lives	
of	~	88	and	18	years,	respectively.	More	recently,	it	has	been	pointed	out	that	the	thermal	
history	of	zircon	plays	a	major	role	in	the	amount	of	radiation	damage	that	is	retained	
today	(Nasdala	et	al.	2004).	Additional	examples	will	be	illustrated	here	using	thermo‐
chronology	data	for	specific	geological	localities.		
All	of	these	studies,	together	with	related	work	have	contributed	to	knowledge	about	

nuclear	waste	disposal.	Furthermore,	 investigations	of	meteorites	have	provided	some	
data	on	the	trapping	of	noble	gases	in	carbon	compounds	(amorphous,	graphite,	diamond,	
etc.)	and	this	has	some	relevance	to	fission	gas	trapping	in	nuclear	reactor	materials	(both	
fission	and	fusion).			
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