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The luminescence during high-energy irradiation (here X-rays or accelerated particles) is an
analytical method that provides insights into the nature of defect structures in minerals. It has a
number of benefits over traditional luminescence techniques. First the energy absorbed is
capable of promoting electrons to energies beyond the conduction band in addition to lower
energy excitation from inelastic scattering interactions that do not rely on resonant absorption,
therefore probing the luminescence of the sample in a more fundamental way. It often excites
(“shakes™) defects not observed in PL, providing a broader census of centre types (Friis et al.
2011). Orientation experiments can be successfully performed under such conditions to explore
the anisotropy of responses (e.g. Finch et al. 2003). Second, high-energy irradiation penetrates
the samples typically to microns in ways that can be modelled — these providing bulk rather
than surface responses that can be atypical (Brooks et al. 2002). Third, irradiation often
modifies the sample in real time in ways that can be anticipated or even numerically modelled
(“making defects”). Irradiation can create new defect types it can also destroy or modify
existing defects, which influences the luminescence spectrum that can be quantified as a
function of dose and/or dose rate. This represents an important and insightful method to
attribute confidently luminescence emissions in minerals with particular defect structures.

We review luminescence during ion implantation (Ion beam luminescence, IBL or
Ionoluminescence IL) and synchrotron X-irradiation (X-ray excited optical luminescence,
XEOL). Because synchrotron X-rays are pulsed with a ps pulse width and frequencies in ns
analysis of the luminescence as a function of time allows time-resolved (TR—) XEOL.

lon implantation

Ion beam luminescence can be carried out with a variety of ion and charged molecular species
and here we review the results of ion implantation experiments on quartz and zircon samples.
With quartz we explored the growth and destruction of luminescence as a function of dose and
dose rate (King et al. 2011a). By comparing the numbers of photons emitted to the numbers of
charge carriers and the dose deposited, we derive numerical models for the mechanisms by
which the sample modification takes place, which we compare with hypotheses for the nature
of the luminescence centres. Such experiments provide a remarkably consistent set of results
showing that UV luminescence centres are depleted at effectively the same rate that red-IR ones
are created. Using such criteria, we attribute the luminescence centres in quartz (see below) in
a manner that explains the changes occurring during irradiation.

[AIO4/M*]° >> [AlO4]° + M*(free) >> [AlO4]° + NBOHC (free)
3.3eV 3.6eV 1.9eV

Ion beam luminescence can be performed by comparing and contrasting different ion species.
Analysis of irradiation of zircon develops a broad band ~600 nm in zircon when the sample is
irradiated with heavy ions and we attribute this to atomic displacements caused by the
momentum of the incoming ions (Finch et al. 2004). We conclude the same features in

27



luminescence from natural zircons are formed by similar damage from natural U-series
radiation.

XEOL and TR-XEOL
We present experimental results of XEOL collected on the 118 beamline of DIAMOND the UK’s
synchrotron facility. On the microfocus beamline, the X-ray beam used can be both focused
and tuned, which allows element sensitive analysis with a high degree of spatial resolution with
an excitation energy range of between 2-20 keV (Taylor et al. 2013).

As with IBL, XEOL causes sample modification and dose and dose rate can be modelled
(King et al. 2011b). However, with XEOL the X-ray energy can be scanned across the core
electron absorption edge of particular elements in the sample. Fine structure on such spectra, if
observed, provides local coordination information of that element (X-ray Absorption Fine
Structure, XAFS) (Mosselmanns et al. 2013; Sapelkin et al., submitted). In addition, since the
X-rays are pulsed, we have developed TR-XEOL facilities with a time resolution capability in
10’s ps — 100’s ns (Mosselmanns et al. 2013). Using this system we observe that many minerals
exhibit ultrafast emissions with lifetimes in ps. Natural luminescent lifetimes of allowed
transitions are ns and hence these ultrafast lifetimes arise as a consequence of quenching or a
competitive energy transfer mechanism. This mechanism of competitive relaxation gives
unique insights into the clustering of defects centres (Taylor 2013).
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