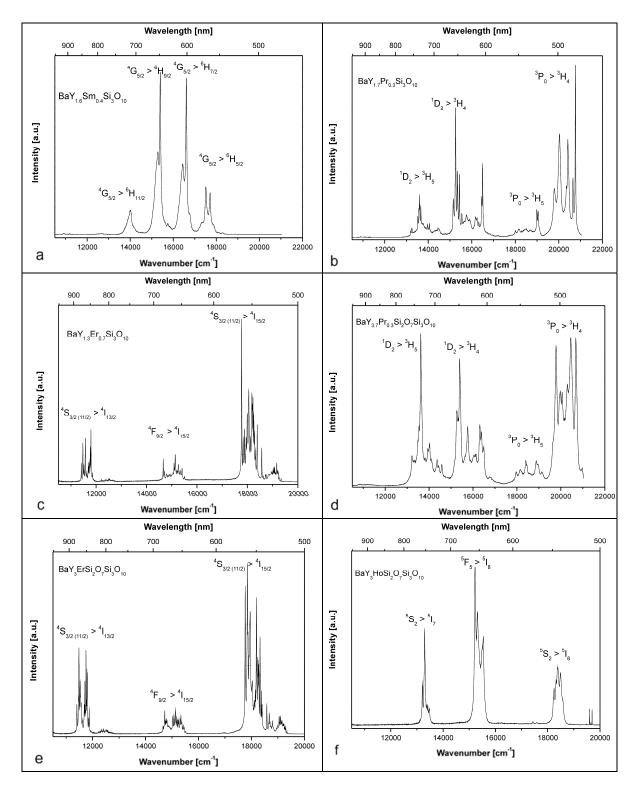
Photoluminescent properties of lanthanide-doped sorosilicates

Wierzbicka-Wieczorek, M.^{1,*}, Lenz, C.², Giester, G.²

¹ Institute for Geosciences, Friedrich-Schiller University Jena, Carl-Zeiss Promenade 10, 07745 Jena, Germany
² Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, 1090 Wien, Austria
*e-mail: maria.wierzbicka-wieczorek@uni-jena.de

The compounds described here are part of a detailed study focusing on the optical characterisation of silicates and zirconosilicates doped with lanthanides. Lanthanide-doped silicates became widely and thoroughly studied objects of research because of their applications in technologies, such as plasma display panels or light-emitting diodes (Liu et al., 2009; Zhang et al., 2013).

Here we present luminescence properties of the sorosilicate BaY₂Si₃O₁₀ doped with Er^{3+} , Pr^{3+} and Sm^{3+} , and the mixed sorosilicate BaY₄(Si₂O₇)(Si₃O₁₀) doped with Er^{3+} , Ho^{3+} and Pr^{3+} . The photoluminescence emission spectra of these two materials are presented in Fig. 1. The spectra were obtained from randomly oriented crystals at room temperature using a Horiba Jobin Yvon LabRAM-HR 800 spectrometer with 473 nm diode laser excitation. The crystallographic datasets of doped sorosilicates were collected using a Kappa Apex2 single-crystal X-ray diffractometer with MoK α radiation.


Luminescence properties of BaY₂Si₃O₁₀:Er³⁺, Pr³⁺, Sm³⁺

In the trisilicate BaY_{1.6}Sm_{0.4}Si₃O₁₀, Sm³⁺ causes two dominant luminescence transitions in the visible orange to red spectral range at 600 and 650 nm, which are assigned to the ${}^{4}G_{5/2} \rightarrow$ ${}^{6}H_{7/2}$ and ${}^{4}G_{5/2} \rightarrow {}^{6}H_{9/2}$ transition, respectively. The presence of Er³⁺ in BaY_{1.3}Er_{0.7}Si₃O₁₀ causes a dominant luminescence emission in the visible yellow spectral range (between 540 and 570 nm), which can be associated with the ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ transition. Pr³⁺ on the structural Y-site in BaY_{1.7}Pr_{0.3}Si₃O₁₀ results in dominant luminescence bands around 500 nm due to the ${}^{3}P_{0} \rightarrow {}^{3}H_{4}$ transition, showing a blue-green emitting colour.

Luminescence properties of BaY4(Si2O7)(Si3O10):Er³⁺, Ho³⁺, Pr³⁺

 Er^{3+} present in the mixed sorosilicate BaY₃Er(Si₂O₇)(Si₃O₁₀) causes a similar emission pattern to that of Er^{3+} in the trisilicate structure (compare Figs. 1c and e). This is because luminescence emissions of the same lanthanide dopant appear from identical spectroscopic levels. Note, however, that the fine sub-level splitting is different between the two structures. The crystal-field splitting depends strongly on the cationic crystallographic environment. But, intensity differences between prevailing transitions may change the emitting luminescence colour. For example, Pr^{3+} present in BaY_{3.7}Pr_{0.3}(Si₂O₇)(Si₃O₁₀) causes a much more dominant red colour component at 740 nm due to the relatively intensified ${}^{1}D_{2} \rightarrow {}^{3}H_{5}$, ${}^{3}H_{4}$ transition (compare Figs. 1b and d). BaY₃Ho(Si₂O₇)(Si₃O₁₀), containing Ho³⁺, shows a dominant characteristic luminescence emission in the red spectral region. This multiplet can be assigned to the ${}^{5}F_{5} \rightarrow {}^{5}I_{8}$ transition.

Acknowledgments: The authors acknowledge the financial support by the German Research Foundation (DFG) and the Austrian Science Foundation (FWF) (Grant P24448-N19).

Fig. 1. The luminescence emission (473 nm excitation) spectra of BaY₂Si₃O₁₀: Er^{3+} , Pr^{3+} , Sm^{3+} (*a*-*c*) and BaY₄ (Si₂O₇)(Si₃O₁₀): Er^{3+} , Ho^{3+} , Pr^{3+} (*d*-*f*).

References:

Liu W-R, Lin C-C, Chiu Y-C, Yeh Y-T, Jang S-M, Liu R-S, Cheng B-M (2009) Versatile phosphors BaY₂Si₃O₁₀:RE (RE = Ce³⁺, Tb³⁺, Eu³⁺) for light-emitting diodes. Opt Express 17:18103-18109

Zhang F, Wang Y, Tao Y (2013) VUV spectroscopic properties of $Ba_2Gd_2Si_4O_{13}$: Re^{3+} ($Re^{3+} = Ce^{3+}$, Tb^{3+} , Dy^{3+} , Eu^{3+} , Sm^{3+}). Mater Res Bull 48:1952–1956